Regulation of Hepatitis C Virus Genome Replication by Xrn1 and MicroRNA-122 Binding to Individual Sites in the 5' Untranslated Region.
نویسندگان
چکیده
UNLABELLED miR-122 is a liver-specific microRNA (miRNA) that binds to two sites (S1 and S2) on the 5' untranslated region (UTR) of the hepatitis C virus (HCV) genome and promotes the viral life cycle. It positively affects viral RNA stability, translation, and replication, but the mechanism is not well understood. To unravel the roles of miR-122 binding at each site alone or in combination, we employed miR-122 binding site mutant viral RNAs, Hep3B cells (which lack detectable miR-122), and complementation with wild-type miR-122, an miR-122 with the matching mutation, or both. We found that miR-122 binding at either site alone increased replication equally, while binding at both sites had a cooperative effect. Xrn1 depletion rescued miR-122-unbound full-length RNA replication to detectable levels but not to miR-122-bound levels, confirming that miR-122 protects HCV RNA from Xrn1, a cytoplasmic 5'-to-3' exoribonuclease, but also has additional functions. In cells depleted of Xrn1, replication levels of S1-bound HCV RNA were slightly higher than S2-bound RNA levels, suggesting that both sites contribute, but their contributions may be unequal when the need for protection from Xrn1 is reduced. miR-122 binding at S1 or S2 also increased translation equally, but the effect was abolished by Xrn1 knockdown, suggesting that the influence of miR-122 on HCV translation reflects protection from Xrn1 degradation. Our results show that occupation of each miR-122 binding site contributes equally and cooperatively to HCV replication but suggest somewhat unequal contributions of each site to Xrn1 protection and additional functions of miR-122. IMPORTANCE The functions of miR-122 in the promotion of the HCV life cycle are not fully understood. Here, we show that binding of miR-122 to each of the two binding sites in the HCV 5' UTR contributes equally to HCV replication and that binding to both sites can function cooperatively. This suggests that active Ago2-miR-122 complexes assemble at each site and can cooperatively promote the association and/or function of adjacent complexes, similar to what has been proposed for translation suppression by adjacent miRNA binding sites. We also confirm a role for miR-122 in protection from Xrn1 and provide evidence that miR-122 has additional functions in the HCV life cycle unrelated to Xrn1. Finally, we show that each binding site may contribute unequally to Xrn1 protection and other miR-122 functions.
منابع مشابه
The P body protein LSm1 contributes to stimulation of hepatitis C virus translation, but not replication, by microRNA-122
The P body protein LSm1 stimulates translation and replication of hepatitis C virus (HCV). As the liver-specific microRNA-122 (miR-122) is required for HCV replication and is associated with P bodies, we investigated whether regulation of HCV by LSm1 involves miR-122. Here, we demonstrate that LSm1 contributes to activation of HCV internal ribosome entry site (IRES)-driven translation by miR-12...
متن کاملmiR-122 is more than a shield for the hepatitis C virus genome.
S ince the discovery in 2005 of the essential role of the liver-specific microRNA, miR-122, in HCV replication (1), the mechanism by which it stimulates this process has proved elusive. In PNAS, Li et al. demonstrate thatmiR-122 acts to shield the HCV genome against degradation by the cytosolic RNA exonuclease, Xrn1 (2). Although this may be one way in which this microRNA promotes HCV replicati...
متن کاملSignals Involved in Regulation of Hepatitis C Virus RNA Genome Translation and Replication
Hepatitis C virus (HCV) preferentially replicates in the human liver and frequently causes chronic infection, often leading to cirrhosis and liver cancer. HCV is an enveloped virus classified in the genus Hepacivirus in the family Flaviviridae and has a single-stranded RNA genome of positive orientation. The HCV RNA genome is translated and replicated in the cytoplasm. Translation is controlled...
متن کاملUnconventional miR-122 binding stabilizes the HCV genome by forming a trimolecular RNA structure
MicroRNAs (miRNAs) typically downregulate protein expression from target mRNAs through limited base-pairing interactions between the 5' 'seed' region of the miRNA and the mRNA 3' untranslated region (3'UTR). In contrast to this established mode of action, the liver-specific human miR-122 binds at two sites within the hepatitis C viral (HCV) 5'UTR, leading to increased production of infectious v...
متن کاملRoberts, Ashley P.E. and Doidge, Rachel and Tarr, Alexander W. and Jopling, Catherine L. (2014) The P body protein LSm1 contributes to stimulation of hepatitis C virus translation, but not replication, by microRNA-
The P body protein LSm1 stimulates translation and replication of hepatitis C virus (HCV). As the liverspecific microRNA-122 (miR-122) is required for HCV replication and is associated with P bodies, we investigated whether regulation of HCV by LSm1 involves miR-122. Here, we demonstrate that LSm1 contributes to activation of HCV internal ribosome entry site (IRES)-driven translation by miR-122...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of virology
دوره 89 12 شماره
صفحات -
تاریخ انتشار 2015